Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474123

RESUMO

Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.


Assuntos
Cardiopatias , Células-Tronco Mesenquimais , Lesões por Radiação , Ratos , Humanos , Animais , Cardiotoxicidade/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Cardiopatias/metabolismo , Lesões por Radiação/metabolismo
2.
Eur J Clin Invest ; : e14140, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050790

RESUMO

BACKGROUND: Traditional combustion cigarette (TCC) smoking is an established risk factor for several types of cancer and cardiovascular diseases. Circulating microRNAs (miRNAs) represent key molecules mediating pathogenetic mechanisms, and potential biomarkers for personalized risk assessment. TCC smoking globally changes the profile of circulating miRNAs. The use of heat-not-burn cigarettes (HNBCs) as alternative smoking devices is rising exponentially worldwide, and the circulating miRNA profile of chronic HNBC smokers is unknown. We aimed at defining the circulating miRNA profile of chronic exclusive HNBC smokers, and identifying potentially pathogenetic signatures. METHODS: Serum samples were obtained from 60 healthy young subjects, stratified in chronic HNBC smokers, TCC smokers and nonsmokers (20 subjects each). Three pooled samples per group were used for small RNA sequencing, and the fourth subgroup constituted the validation set. RESULTS: Differential expression analysis revealed 108 differentially expressed miRNAs; 72 exclusively in TCC, 10 exclusively in HNBC and 26 in both smoker groups. KEGG pathway analysis on target genes of the commonly modulated miRNAs returned cancer and cardiovascular disease associated pathways. Stringent abundance and fold-change criteria nailed down our functional bioinformatic analyses to a network where miR-25-3p and miR-221-3p are main hubs. CONCLUSION: Our results define for the first time the miRNA profile in the serum of exclusive chronic HNBC smokers and suggest a significant impact of HNBCs on circulating miRNAs.

3.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446284

RESUMO

The importance of 3D culture systems for drug screening or physio-pathological models has exponentially increased in recent years [...].


Assuntos
Microambiente Tumoral , Avaliação Pré-Clínica de Medicamentos
5.
Curr Stem Cell Res Ther ; 18(4): 440-444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35927909

RESUMO

Smoking habits represent a cardiovascular risk factor with a tremendous impact on health. Other than damaging differentiated and functional cells of the cardiovascular system, they also negatively affect reparative mechanisms, such as those involved in cardiac fibrosis and in endothelial progenitor cell (EPC) activation. In recent years, alternative smoking devices, dubbed modified tobacco risk products (MRPs), have been introduced, but their precise impact on human health is still under evaluation. Also, they have not been characterized yet about the possible negative effects on cardiovascular reparative and regenerative cells, such as EPCs or pluripotent stem cells. In this perspective, we critically review the still scarce available data on the effects of MRPs on molecular and cellular mechanisms of cardiovascular repair and regeneration.


Assuntos
Células Progenitoras Endoteliais , Produtos do Tabaco , Humanos , Fumaça , Fumar
6.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232943

RESUMO

Ex vivo modelling systems for cardiovascular research are becoming increasingly important in reducing lab animal use and boosting personalized medicine approaches. Integrating multiple cell types in complex setups adds a higher level of significance to the models, simulating the intricate intercellular communication of the microenvironment in vivo. Cardiac fibrosis represents a key pathogenetic step in multiple cardiovascular diseases, such as ischemic and diabetic cardiomyopathies. Indeed, allowing inter-cellular interactions between cardiac stromal cells, endothelial cells, cardiomyocytes, and/or immune cells in dedicated systems could make ex vivo models of cardiac fibrosis even more relevant. Moreover, culture systems with 3D architectures further enrich the physiological significance of such in vitro models. In this review, we provide a summary of the multicellular 3D models for the study of cardiac fibrosis described in the literature, such as spontaneous microtissues, bioprinted constructs, engineered tissues, and organs-on-chip, discussing their advantages and limitations. Important discoveries on the physiopathology of cardiac fibrosis, as well as the screening of novel potential therapeutic molecules, have been reported thanks to these systems. Future developments will certainly increase their translational impact for understanding and modulating mechanisms of cardiac fibrosis even further.


Assuntos
Células Endoteliais , Engenharia Tecidual , Animais , Comunicação Celular , Fibrose , Miócitos Cardíacos/metabolismo
7.
Cell Prolif ; 55(11): e13312, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35946052

RESUMO

OBJECTIVES: Extracellular vesicles (EVs) are key biological mediators of several physiological functions within the cell microenvironment. Platelets are the most abundant source of EVs in the blood. Similarly, platelet lysate (PL), the best platelet derivative and angiogenic performer for regenerative purposes, is enriched of EVs, but their role is still too poorly discovered to be suitably exploited. Here, we explored the contribution of the EVs in PL, by investigating the angiogenic features extrapolated from that possessed by PL. METHODS: We tested angiogenic ability and molecular cargo in 3D bioprinted models and by RNA sequencing analysis of PL-derived EVs. RESULTS: A subset of small vesicles is highly represented in PL. The EVs do not retain aggregation ability, preserving a low redox state in human umbilical vein endothelial cells (HUVECs) and increasing the angiogenic tubularly-like structures in 3D endothelial bioprinted constructs. EVs resembled the miRNome profile of PL, mainly enriched with small RNAs and a high amount of miR-126, the most abundant angiogenic miRNA in platelets. The transfer of miR-126 by EVs in HUVEC after the in vitro inhibition of the endogenous form, restored angiogenesis, without involving VEGF as a downstream target in this system. CONCLUSION: PL is a biological source of available EVs with angiogenic effects involving a miRNAs-based cargo. These properties can be exploited for targeted molecular/biological manipulation of PL, by potentially developing a product exclusively manufactured of EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética , Neovascularização Patológica , Plaquetas
8.
Antioxidants (Basel) ; 11(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35883727

RESUMO

Smoking is still a major cardiovascular risk factor, despite many public awareness campaigns and dedicated interventions. Recently, modified risk products (MRP), e.g., heat-not-burn cigarettes (HNBCs), have been introduced as surrogates of traditional combustion cigarettes (TCCs). Although these products are promoted as healthier than TCCs, few studies have been conducted to assess it. This work is a sex-focused sub-study of a prospective observational study in which apparently healthy chronic TCC smokers were age-matched with regular HNBC users. Blood samples were collected for biochemical assays and blood pressure and flow-mediated dilation (FMD) were measured. Out of 60 subjects, 33 (55%) were women, and 27 (45%) men, with 11 (33%) vs. 9 (33%) non-smokers, respectively, 10 (30%) vs. 10 (37%) TCC smokers, and 12 (36%) vs. 8 (30%) HNBC smokers (p = 0.946). Bivariate and multivariable analyses showed no statistically significant between-sex differences in NO, H2O2, sCD40L, sNox2-dp, sP-selectin, platelet aggregation, cotinine or FMD, overall, in non-smokers, in TCC smokers, or in HNBC smokers (all p > 0.05). HNBCs appeared safer than TCCs when focusing on Nox2-dp (p = 0.026) and sP-selectin (p = 0.050) but had similar levels of the other measured markers. In conclusion, HNBCs have similar detrimental effects on women and men's oxidative stress (H2O2: p = 0.49; sNox2-dp: p = 0.31) and platelet activation (sP-selectin: p = 0.33; platelet aggregation p = 0.87).

9.
Circ Res ; 131(3): 239-257, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35770662

RESUMO

BACKGROUND: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS: We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS: Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-ß1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS: Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fibrose , Humanos , Camundongos , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Verteporfina , Proteínas de Sinalização YAP
10.
J Pathol ; 258(2): 136-148, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751644

RESUMO

Cardiac stromal cells (CSCs) are the main players in fibrosis. Dysmetabolic conditions (metabolic syndrome-MetS, and type 2 diabetes mellitus-DM2) are strong pathogenetic contributors to cardiac fibrosis. Moreover, modulation of the oxidative state (OxSt) and autophagy is a fundamental function affecting the fibrotic commitment of CSCs, that are adversely modulated in MetS/DM2. We aimed to characterize CSCs from dysmetabolic patients, and to obtain a beneficial phenotypic setback from such fibrotic commitment by modulation of OxSt and autophagy. CSCs were isolated from 38 patients, stratified as MetS, DM2, or controls. Pharmacological modulation of OxSt and autophagy was obtained by treatment with trehalose and NOX4/NOX5 inhibitors (TREiNOX). Flow-cytometry and real-time quantitative polymerase chain reaction (RT-qPCR) analyses showed significantly increased expression of myofibroblasts markers in MetS-CSCs at baseline (GATA4, ACTA2, THY1/CD90) and after starvation (COL1A1, COL3A1). MetS- and DM2-CSCs displayed a paracrine profile distinct from control cells, as evidenced by screening of 30 secreted cytokines, with a significant reduction in vascular endothelial growth factor (VEGF) and endoglin confirmed by enzyme-linked immunoassay (ELISA). DM2-CSCs showed significantly reduced support for endothelial cells in angiogenic assays, and significantly increased H2 O2 release and NOX4/5 expression levels. Autophagy impairment after starvation (reduced ATG7 and LC3-II proteins) was also detectable in DM2-CSCs. TREiNOX treatment significantly reduced ACTA2, COL1A1, COL3A1, and NOX4 expression in both DM2- and MetS-CSCs, as well as GATA4 and THY1/CD90 in DM2, all versus control cells. Moreover, TREiNOX significantly increased VEGF release by DM2-CSCs, and VEGF and endoglin release by both MetS- and DM2-CSCs, also recovering the angiogenic support to endothelial cells by DM2-CSCs. In conclusion, DM2 and MetS worsen microenvironmental conditioning by CSCs. Appropriate modulation of autophagy and OxSt in human CSCs appears to restore these features, mostly in DM2-CSCs, suggesting a novel strategy against cardiac fibrosis in dysmetabolic patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Diabetes Mellitus Tipo 2 , Fator A de Crescimento do Endotélio Vascular , Autofagia , Diabetes Mellitus Tipo 2/genética , Endoglina/metabolismo , Células Endoteliais/metabolismo , Fibrose , Humanos , Estresse Oxidativo , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Cell Death Discov ; 8(1): 149, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365624

RESUMO

Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.

12.
Antioxidants (Basel) ; 11(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35453383

RESUMO

Background: Aging is an independent risk factor for cardiovascular diseases. The autophagy process may play a role in delaying aging and improving cardiovascular function in aging. Data regarding autophagy in atrial fibrillation (AF) patients are lacking. Methods: A post hoc analysis of the prospective ATHERO-AF cohort study, including 150 AF patients and 150 sex- and age-matched control subjects (CS), was performed. For the analysis, the population was divided into three age groups: <50−60, 61−70, and >70 years. Oxidative stress (Nox2 activity and hydrogen peroxide, H2O2), platelet activation (PA) by sP-selectin and CD40L, endothelial dysfunction (nitric oxide, NO), and autophagy parameters (P62 and ATG5 levels) were assessed. Results: Nox2 activity and H2O2 production were higher in the AF patients than in the CS; conversely, antioxidant capacity was decreased in the AF patients compared to the CS, as was NO production. Moreover, sP-selectin and CD40L were higher in the AF patients than in the CS. The autophagy process was also significantly impaired in the AF patients. We found a significant difference in oxidative stress, PA, NO production, and autophagy across the age groups. Autophagy markers correlated with oxidative stress, PA, and endothelial dysfunction in both groups. Conclusions: This study provides evidence that the autophagy process may represent a mechanism for increased cardiovascular risk in the AF population.

13.
Am J Transl Res ; 14(2): 1172-1187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273721

RESUMO

Cardiac stromal cells have been long underestimated in their functions in homeostasis and repair. Recent evidence has changed this perspective in that many more players and facets than just "cardiac fibroblasts" have entered the field. Single cell transcriptomic studies on cardiac interstitial cells have shed light on the phenotypic plasticity of the stroma, whose transcriptional profile is dynamically regulated in homeostatic conditions and in response to external stimuli. Different populations and/or functional states that appear in homeostasis and pathology have been described, particularly increasing the complexity of studying the cardiac response to injury. In this review, we outline current phenotypical and molecular markers, and the approaches developed for identifying and classifying cardiac stromal cells. Significant advances in our understanding of cardiac stromal populations will provide a deeper knowledge on myocardial functional cellular components, as well as a platform for future developments of novel therapeutic strategies to counteract cardiac fibrosis and adverse cardiac remodeling.

14.
Panminerva Med ; 63(3): 324-331, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34738774

RESUMO

BACKGROUND: New messenger RNA (mRNA) and adenovirus-based vaccines (AdV) against Coronavirus disease 2019 (COVID-19) have entered large scale clinical trials. Since healthcare professionals (HCPs) and armed forces personnel (AFP) represent a high-risk category, they act as a suitable target population to investigate vaccine-related side effects, including headache, which has emerged as a common complaint. METHODS: We investigated the side-effects of COVID-19 vaccines among HCPs and AFP through a 38 closed-question international survey. The electronic link was distributed via e-mail or via Whatsapp to more than 500 contacts. Responses to the survey questions were analyzed with bivariate tests. RESULTS: A total of 375 complete surveys have been analyzed. More than 88% received an mRNA vaccine and 11% received AdV first dose. A second dose of mRNA vaccine was administered in 76% of individuals. No severe adverse effects were reported, whereas moderate reactions and those lasting more than 1 day were more common with AdV (P=0.002 and P=0.024 respectively). Headache was commonly reported regardless of the vaccine type, but less frequently, with shorter duration and lower severity that usually experienced by participants, without significant difference irrespective of vaccine type. CONCLUSIONS: Both mRNA and AdV COVID-19 vaccines were safe and well tolerated in a real-life subset of HCPs and AFP subjects.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Cefaleia/induzido quimicamente , Vacinação/efeitos adversos , Adolescente , Adulto , Idoso , Vacina BNT162 , COVID-19/transmissão , ChAdOx1 nCoV-19 , Estudos Transversais , Feminino , Cefaleia/diagnóstico , Cefaleia/epidemiologia , Pesquisas sobre Atenção à Saúde , Pessoal de Saúde , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Saúde Ocupacional , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
15.
Thorax ; 76(6): 618-620, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157671

RESUMO

Tobacco habit still represents the leading preventable cause of morbidity and mortality worldwide. Heat-not-burn cigarettes (HNBCs) are considered as an alternative to traditional combustion cigarettes (TCCs) due to the lack of combustion and the absence of combustion-related specific toxicants. The aim of this observational study was to assess the effect of HNBC on endothelial function, oxidative stress and platelet activation in chronic adult TCC smokers and HNBC users. The results showed that both HNBC and TCC display an adverse phenotype in terms of endothelial function, oxidative stress and platelet activation. Future randomised studies are strongly warranted to confirm these data.


Assuntos
Endotélio Vascular/fisiopatologia , Temperatura Alta , Estresse Oxidativo , Ativação Plaquetária/fisiologia , Fumar/metabolismo , Produtos do Tabaco/estatística & dados numéricos , Vaping , Idoso , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/fisiopatologia
17.
J Am Heart Assoc ; 9(24): e017000, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33317369

RESUMO

Background The role of microRNAs dysregulation in tobacco cigarette smoking-induced vascular damage still needs to be clarified. We assessed the acute effects of tobacco cigarette smoking on endothelial cell-related circulating microRNAs in healthy subjects. In addition, we investigated the potential role of microRNAs in smoking-dependent endothelial cell damage. Methods and Results A panel of endothelial-related microRNAs was quantified in healthy subjects before and after smoking 1 tobacco cigarette. Serum levels of miR-155 were found to be significantly increased shortly after smoking. We also observed a progressive and significant miR-155 accumulation in culture media of human endothelial cells after 30 minutes and up to 4 hours of cigarette smoke condensate treatment in vitro without evidence of cell death, indicating that miR-155 can be released by endothelial cells in response to smoking stress. Cigarette smoke condensate appeared to enhance oxidative stress and impair cell survival, angiogenesis, and NO metabolism in human endothelial cells. Notably, these effects were abrogated by miR-155 inhibition. We also observed that miR-155 inhibition rescued the deleterious effects of cigarette smoke condensate on endothelial-mediated vascular relaxation and oxidative stress in isolated mouse mesenteric arteries. Finally, we found that exogenous miR-155 overexpression mimics the effects of smoking stress by inducing the upregulation of inflammatory markers, impairing angiogenesis and reducing cell survival. These deleterious effects were associated with downregulation of vascular endothelial growth factor and endothelial NO synthetase. Conclusions Our results suggest that miR-155 dysregulation may contribute to the deleterious vascular effects of tobacco smoking.


Assuntos
Fumar Cigarros/efeitos adversos , Células Endoteliais/metabolismo , MicroRNAs/sangue , /efeitos adversos , Adulto , Indutores da Angiogênese/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Sobrevivência Celular , Regulação para Baixo , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Modelos Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/fisiologia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114386

RESUMO

Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-ß) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.


Assuntos
Matriz Extracelular/metabolismo , Insuficiência Cardíaca/patologia , Células-Tronco Mesenquimais/citologia , Adulto , Idoso , Animais , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/genética , Feminino , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade
20.
Front Cell Dev Biol ; 8: 559032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015056

RESUMO

The increased knowledge in cell signals and stem cell differentiation, together with the development of new technologies, such as 3D bioprinting, has made the generation of artificial tissues more feasible for in vitro studies and in vivo applications. In the human body, cell fate, function, and survival are determined by the microenvironment, a rich and complex network composed of extracellular matrix (ECM), different cell types, and soluble factors. They all interconnect and communicate, receiving and sending signals, modulating and responding to cues. In the cardiovascular field, the culture of stem cells in vitro and their differentiation into cardiac phenotypes is well established, although differentiated cardiomyocytes often lack the functional maturation and structural organization typical of the adult myocardium. The recreation of an artificial microenvironment as similar as possible to the native tissue, though, has been shown to partly overcome these limitations, and can be obtained through the proper combination of ECM molecules, different cell types, bioavailability of growth factors (GFs), as well as appropriate mechanical and geometrical stimuli. This review will focus on the role of the ECM in the regulation of cardiac differentiation, will provide new insights on the role of supporting cells in the generation of 3D artificial tissues, and will also present a selection of the latest approaches to recreate a cardiac microenvironment in vitro through 3D bioprinting approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...